

General Specifications

Operation

- Measurement Type
- Measuring Range*
- Outputs*
- Sensitivity*
- Accuracy
- Repeatability
- Bandwidth
- Load at Current Output
- Load at Voltage Output
- Temperature Drift
- Short Circuit Protection

Power Requirements

- Voltage
- Consumption
- Voltage Reversal ProtectionWarm-up Time
- Connection

Connector Type

 Maximum Cable Length For Current Output For Voltage Output Non-contact proximity, eddy current 0 to 10 mm [0 to 394 mils] 4 to 20 mA 0 to 10 V 1.6 mA/mm [40.6 μ A/mil] 1 V/mm [25.4 mV/mil] According to correction factor \pm 5% DC to 500 Hz (-3dB) 500 Ω max. 10 k Ω min. < 10% Built-in

15 to 30 Vdc 30 mA max. Built-in 5 minutes

4-pin M12 male

300 m [984 ft] 100 m [328 ft] **PES**⁻⁻110

Eddy Current Proximity Sensor

The PES-110 eddy current proximity sensor is designed for non-contact measurements of relative vibration, displacement, and axial positioning. The sensor is equipped with built-in conditioning circuitry allowing it to be directly connected to processing instrumentation.

Environment

- Temperature Range
 Operating
 Storage
- Protection Rating

0 to 70 °C *[32 to 158 °F]* -25 to 70 °C *[-13 to 158 °F]* IP67

Physical Characteristics

- Sensor Body
- Sensing Face

Chrome-plated brass PBTP

Typical Response Comparison (Steel vs. Stainless Steel)

Warning: Response of inductive sensors varies with target material, as shown in the graph above. A site calibration is required to calculate the appropriate correction factor to be applied.

*Target material: FE360 steel

Dimensions

VibroSystM Inc. | www.vibrosystm.com

VibroSystM reserves the right to change specifications to improve products without notice.

VibroSystM[®], the VibroSystM logo, the ZOOM logo, and PES[™] are registered trademarks or trademarks of VibroSystM Inc.